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STMMARY

Linearized-theory calculations of the drag reduction achleved by
applying the first three terms of a power series for twist to flat delta
wings are presented. 1In addltion, the reductions due to applying linear
twist to a family of flat arrow wings are presented. The resulits cover
the speed range of subsonlic leading edges.

The results show a 6-percent drag reduction due to twisting a flst
delte wing with sonic leading edges and a steady decrease in the gains
a8 sweepback incresses.

For the family of linearly twisted arrow wings investigated (that
with sonic trailing edges), the maximum drag reduction is 2 percent in
the medium sweepback range with a steady diminution in both directions.

A beneficial effect of Increasing aspect ratio obscures the twist effects
in this case. The convergence to the optimum-power-series twist appears
to be rapid.

INTRODUCTION

Numerous examples of drag reduction by warping sweptback supersonic
wings have been calculated. (For example, see refs. 1 to 3.} In a recent
paper (ref. L), as many as 10 types of loading have been combined on a
delts wing including power-series twist terms. In the present peper two
cases of en arrow-wing plen form subjected to pure twist (spanwise slope
variation) are considered. The twist is applied symmetrically from the
root as a power of the distance from the root. Powers up to three are
considered for a delta plen form. For an errow plan form with sonic
trailing edges the effects of linear twist are shown.

The Lagrange method of reference 3 is used to compute both the
optimum twist and the drag decrease over a flat wing for a given total
1ift. Leading-edge thrust is included in the drag calculations.
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SYMBOLS - R

proportionality constent &k
parameters defining pressure distribution

drag coefficient

interference drag coefficlent excluding lesding-edge
thrust -

iq@erference drag coefficient of leading-edge thrust

interference drag coefficient including leading-edge _
thrust : i oo

1ift coefficlent of a wing with ith power twist o o

1ift coefficlent of a combination of twisted wings

part of 1lift coefficient due to ith-power component
wing when Cp, =1 :

lifting pressure coefficient (pressure on the lower
surface minus pressure on the upper surface, divided
by free-stream dynamic pressure)

compiete elliptic integral of second kind with modulus k

complete elliptic integral of first kind with modulus k -

speed-sweepback parameter (see fig. 1)

free-stream Mach number
tangent of semiapex angle {see fig. 1)

wing srea

basic varisebles of generalized conlcal flow ' _ o
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v free-stream velocity
vy veloclty of flow normal to leading edge, near leading
edge
W velocity of flow in z-direction
X,¥,2Z right-handed Certesisn coordinate system (see fig. 1)
o loceal angle of attack
B=\M -1
2XCp flat-plate drag coefficient minus optimum drag coefficient
1-4 root chord of arrow wing (see fig. 1)
@ velocity potential
Subscripts:
£ flat
i, ] power of twist variation
r dummy index or root
t tip
T plan form
ANATYSTS

Pressure Computation
For a wing subjected to a symmetrical pure twist which varies as a

power of the distance from the root (fig. 1), the downwash variation is

7= ekl (22)

By introducing the variasble 17 = Py/x, equation (la) becomes

X

(E)i T (1)
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The downwesh variation (eq. (1b)) is of the type treated in references 5
and 6, and the general formule for the pressure distribution is given in
appendix A. If i 1s no greater than 3, the lif'ting pressure coeffi-
client is

(6 = py/x) (2)

Cp,1 = (i)i byo + by282 + byt
’ B

902 - g2

The coefficients by, in equation (2) can be determined from the fol-
lowing matrix equation:

CB= A (3)

A general case of equation (3) is discussed in eppendix A. For the case
at hand, for linear twist, ' - B

i ] ] )
1(-1,2,0) I(-1,2,2) b10 "3 a1

Cy = B, = A = (ka)
|-_1(0,2,0) 1(0,2,2) | flz_ ! 0 ]

for quedretic twist,
[ 7] I . r 5 -
1(-1,3,0) I(-1,3,2) b2o " as

Co = Bp = - Ay = (4b)
1(1,3,0)  1(1,3,2) bop 0
- - - .=~ — J




NACA TN 410k ' 5

and for cubic twist,

B T T ] B 7
2k

I(-1,%,0) 1I(-1,%,2) I(-1,L,k4) b3 oy 83
C3 = 1(o,4,0) 1I(0,k,2) I(O,k,k) Bz = | bzp Az =} O
1I(2,4,0) I(2,k,2) I(2,4,L4) bz 0

L = L n - -

(ke)

The I(a,b,c) functions of equations (4) are evaluated (appendix A)
from the following relations:

I(a+l,btl,c) = (¢ - b - 1)I(a,b,c) - B9 a% I{a,b,c) (5a)
0
I(a-b,0,¢) = Ja_bic - Ja-bict2 (5b)
J feo +%dt (50)
n= c
1 - 22 - eg?

If, for convenience, the following new varisbles are introduced:

~

k= 8p

e
¥ = o

0
ayy = agml g (6)
— - b;
k(l+i r) £, = ir

hmag(1l)
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equation (2) mey be rewrititen as follows:

£i0 + £3p¥2 + Tyt
e

Cp,q = bmegy(1!)xl (1)

By evaluating the elements of equations (4) end substituting in terms
of the new variables (egs. (6)), the coefficients fiJ are obtained

a8 given in table I.

Drag Computation

Integration over the plen form yields the following equations for
normalized 1ift and interference drag coefficients (hmait(i!) = 1):

L

}: fi:c“"r
Li"‘fcp, _2(li-+u;i+l fol r=0 4y 8)

(1 - uw)i+2vl - ¥

nop, 1 = - & fr cp,i(g)j + p, J(§>i as

L L
i+g+l i Z Ead Z f'jrwr

_1 Q- p) \jpl 1 ¥ r=0 ¥or=0
0

2 1
2 awan G- e SRy

dy

(9)

It is understood in equations (8) and (9) that only even values of r
occur. -
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The interference drag given by equation (9) does not include leading-
edge thrust which is calculated separately in sppendix B where it is
shown that

% \fl-ka A
(io

m<CD’ij)T T (1 -p)it+3+2

h) (fjo + Lyt fjh) (10)

The total interference drag may be written as the sum of equations (9)
end (10)

mED,ij = mCp,13 + m(cD,ij)T (11)

Cp. 4
Calculated values of the drag-lift coefficlents e = D13
Cr,1CL,
derived from equations (8) to (11) are given in table II. The quanti-
ties €13 and the analysis given in reference 3 allow the calculation

of the optimum partition of a given 1lift among the twisted wings of this
report for least drag of the combination. The optimum partitions of a
unit 1ift coefficient smong the twisted wings of this report, as well as
the drag of these partitions, are calculated by the method of reference 3
and are given in table IIX.

RESULTS

Delta Wings

The total drag of the optimum twisted delta wings, together with
the totel drag of the component loadings teken alone, is shown in fig-
ure 2(&); gll sre at unit 1ift coefficlent. Unit 1lift coefficlent on
the twisted wings tasken alone is attained by increasing the tip angle
of attack a4, the root angle of attack remaining zero. These values
all include leading-edge thrust. A lower bound for the drag calculated
as in reference T is shown for comparison. It is pointed out in ref-
erence 4 that this bound is a poor spproximation to the minimum in the
lower sweepback range.

The small overall improvement in delta-wing drag level indicated
by figure 2(a) is made by lowering the flat-plate wave drag at the
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expense of incréasing the vortex drag. The vortex drag is a minimum for
the flat delta wing and is equal to the total drag at k = 0. The net
result of this process in shown in figure 2(b) for a wing with optimum
linear twist, as well as for the wing with optimum combined linesr, quad-
ratic, and cubic twiet which is plotted in figure 2(a). Figure 2(b)
shows that the grester part of the small galns obtained are contributed
by the linear twist throughout the speed range. Thig indicates a rapid
convergence to the optimum-power-serles twist. At k = 1.0 the six
additional cembered surfaces combined with the flat delta wing in ref-
erence 4 gave about another L-percent reduction in the total drag, or

a total of nearly 10 percent.

Arrow Wings

Figure 3 is analogous to figure 2, except that in figure 3 only
linear twist 1s combined with the flat plate. The family of arrow wings
considered in figure 3 have sonic trailing edges.

Figure 3(a) indicates that the possible galins due to twlst are small.
The Iincresse in aspect ratio with increasing k has a beneficial effect
in reduecing the total dreg which obscures the effect of the twist. The
small twist effect is shown more clearly in figure 3(b) with a maximum
drag reduction of 2 percent.

Optimum Settihgs

Figure 4 shows the settings required on linearly twisted wings for
maximum dreg reduction; ap is the angle of attack required for wnit

1ift coefficient on a flat wing, whereas o, and o are the root and

tip angles of atteck on the wing with optimum linear twist, also at wmit
11ft coefficient.

If a 60° delta wing at M = VE k = jé: and & 1lift coefficient of
5
0.2 are considered, figure h(a) indicates that about 2° of washout is
required. The drag reduction of 2.4 percent in this exasmple compeares with
3.%-percent drag reduction that could have been obtained if quadratic and
cublc twist had been included (fig. 2(b)).

CONCLUDING REMARKS

Calculations of the maximum drag reduction achieved by applying the
first three terms of a power series for twist have shown that the drag of
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flat delte wings with sonic leading edges can be reduced approximately

6 percent. The possible gains steadily diminish as sweepback is increased.
Similer dresg-reduction calculations for a family of linearly twisted arrow
wings with sonic tralling edges show a maximum drag reduction of about

2 percent in the medium sweepback range with steadily decreasing gains in
both directions. In this case, however, the beneficial effects of high
aspect ratio obscure the effects of twist in the lower sweepback range.
The convergence to the optimum-power-series twist appears to be rapid.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fleld, Va., June 13, 1G57.



10 : NACA TN L4104

APPENDIX A
GENERAL FORMULAS FOR PRESSURE DISTRIBUTIONS

Generalized Conicel Wings

For downwash distributions of the rather generasl type
B i"’ 8y Al
- IZ -
(x) v Py () (Tl X ) (a1)

where Pj; 1is a polynomial of degree 1, Heaslet and Lomax in refer-
ences 5 end 6 have derived the lifting pressure coefficient

i+l

e () 2

for the case of symmetrical sweepback. (See fig. 1.) The coeffi-
cients by,. are determined in reference 6 by the following equation:

141
1 8 ( V 203 \'* Zybirtr
- (B\¥ . n-t)y1-1t7(3 r=0____
F1n) (x) Vook(1!) fl \at) 2 - o at
(A3}

Equating coefficients of 17 on both sides of equation (A3) yields
1 + 1 linear relations for by,. Since solutions are additive, single
terms of the polymomial P; will be considered separately.

Although equation (A3) 1s of concise and elegant form, it is not
one suitable for calculations or convenient for discussion of solutions.
In order to start a systematic reduction of the finite-part integrals of
equation (A3) » Tthe following notation is introduced:

8 b
I(a,b,c) = j[‘ 0 ta\/1 - t2<aa—t) 0 a (Al)
1 ‘,te _ 902
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The derivative in the integrand of equation (Al) is a homogeneous
function of degree ¢ - b - 1. For this derivative, Euler's relation
for homogeneous functions is

b+l b b
@) e s e o) =
t2 - 952 0 2 - 957 CYt2 - 2
(45)

Multiplying equation (A5) by tafl - t2 and integrating ylelds
I(a+l,b+l,c) = (¢ - b - 1)I(a,b,c) - 8p % I(a,b,c) (A6)

0

From equation (A6) it is plain that any I(a,b,c) can be derived
by b applications of equation (A6) to

I(a-b,0,¢) = Jg_pie - Jabietd (AT)

where

n =
1 \/1 _ 2 Jte _ 902

In these equations J, is, in general, an elliptic integral and as shown
in reference 8 satisfies the following relation:

(0 + VJgp - 01 +F)I, + (0 - VET, 5, = 0 (89)

For n near zero, J, msy be readily put in a standard form. Any other
Jp may be derived by using equation (A9). For n near zero:
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J_2=-k%

J-1='.%E"2t'

Jo = =K e (A20)
Jl=-§

Jp = -E -

where the modulus of XK and of E is equal to Jl - Ee. Inspection of
equation (A9) shows that Jpn is a homogeneous linear function of E

and K for even values of n.

function of X.

For odd velues of n, J, is a rational

Since the derivatives of E and K

.
dF _ & K - E
E-Lx-3

[ (A1)
&_Fx-E (-1-%)
dk s

Ek2

are also homogeneous linear functions of K and E, then I(e,b,c) 1is
& homogeneous lineasr function of X and E, when a ~-Db + ¢ is even.

If Py = aini, then a linear set of equations for by, msy be

written as follows:

as

4

~

i+l
—B ) by, I(-1,141,7)
h(i!)

r=0

. (A122)

141
Zbiri(j,i+l,r) (3=0,1,2,...,i-1)
= - )

1
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or in matrix form as

- . o
I1(-1,i+1,0) I(-1,i+1,1) ... I(=1,i+L,i+1)| |Bi0 %(i.' ) a]
I(0,i+1,0) I(0,1+1,1) e I(0,i41,1i41) bi1 0
I(i-1,i+1,0) I(i-1,1+1,1) ... I(i-1,i+l,1i+L) i byg 0

bs

i 1,i+% (A12b)

which may also be written as
CB=A (Al2c)

Since the single term under consideration is an odd or even function

as 1 1s odd or even, the pressure must be an odd or even function

with 1. Thus, every other element of the B matrix must be zero. The
first element is zero when 1 1is odd; the second element is zero when i
is even. Consider now the C matrix. Equaetions (A7), (49), and (A1O)
show that, for odd values of p=4a -b + ¢, I(a-b,0,c) is a polynomial
in éL for p <0 and e polynomial in eo for p > 0. The polynomial

0
degrees axe -p for p<0O and p+1 for p > 0. When the recursion

formule (A6) is epplied 1 + 1 times to I(j-1,0,r), in every row except
the first, the value of I 1s zero when p is odd. Thus, every other

I is identically zero, except in the first row. When p is even, I 1is,
in general, not zero.

If the solutions of equations (Al2) are now considered, every other
equation, excluding the first, disappears. This means that for odd i
and odd downwash or for even i and even downwash the number of wvariables
and equations is the same and & unique solution exists. Reference 5
points out that the form of the pressure solution (eq. (A2)) is unchenged
if the natural sign of the downwash polynomial is required to change
for 17 < 0. With respect to equations (Al2), even solubtlions may be
obtained from odd 1, or odd solutions fram even 1, by reversing the
natural choice of zero bj,, in the B matrix. Agaln considering equa-
tions (A12), for odd i and even downwash or for even 1 and odd down-
wash, it is found that the number of variables and equations 1s again
the same and a unique solution again exists.
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For a polynomial term of degree v < 1, the linear equations are

1+l .
N
0= Ez by,I(J,1+1,r) (J=-1,0,...1-v=2,1=v,...1-1)
r=0
> (Al3a)
i+l '
B i-v E:
8y = = =1 byL(l=-v-1,i+l,r
v ’-I-(i-v)v'() j_r( b ,)
r=0 g
or as before i
CB=A (AL%Db)
where C and B .are unchanged, but
[ o
0
0
A= % a,(1 - v)iv! (A13¢)
0
. O i

For v <1, there is ggain a unique solution for each v_but it 1s not
posslble to demand odd solutions for even v_. or even solutions for odd v.
Such a demand sets to zero the right-hand side of equation (Al3a) and
there are no solutions. =

The underlying reason that the present analysis will not yleld solu-
tions in every case is that the vth and succeeding derivatives of the
downwash terms with forced sign reversals have singularities at the origin
which must be accounted for in the 1nversion of an integral equation.

This was polnted out in reference 9 by Kafka who shows that a logerithmic
singularity in the pressure. at n1 =0 1is required to produce the required
downwash. Therefore the solution to equation (A2) is incomplete when

v <i. In order to include all cases, expressions analogous to equa- =~ %
tions (A6}, (A7), and (A8) may be derived by an analysis similar to that
given, and the coefficients of the logarithmic terms may be determined.
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Twisted Wings
The downwash variation for a symmetrically twisted wing is
i
Byw _ i
(;) 7 = -8l (A1k)
and this case is treated by equations (A12). For linear twist
CiB1 = A (A15e)
where
N
I(-l,E,O) I(—l,2,2) blo - E al
Cq = By = A =
1(0,2,0) 1(0,2,2) bio 0
(A15D)
Use of equations (46}, (AT), (A9), and (A10) ylelds
A
I(-1,2,0) = - X
%
I(-1,2,2) = - X
k
¢ (A16)
1(0,2,0)= K- fe
l1-Xk
1(0,2,2) = EEK;EEE
l1-k

In a similar manner, for quadratic twist

CoBy = A, (A172)
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and
I('l’B;O) I('l:5:2) bgo
1(1,3,0) I(1,3,2) b
where
(-lL + TS - ELL)E + (2'E2 - h'EJ‘L)K
1(-1,3,0) = —
kk
(-6 + 10E° - 2#‘)*3 + (3122 - 51‘;”)1{
I(‘l:3:2) = ") Ll-
kk
-2 =2
1(1,3,0) = (lL 2k )E +(-3 + K )K
kb,
-2
1+% JE - 2k
1(1,3,2) = ( i )u
k
And for cubic twilst
and - ~ _‘
I(-1,4,0) I(-1,k,2) I(-1,L4,k4) b1
C_3 = | 1(0,4,0) I(0,k,2) I(0,h,k4) 135 = b52
1(2,4,0) I(2,4,2) I(2,4,4) b3j+
- _ L _

NACA TN L4104

(A18)

(A19D)
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where
_ 9%
I(-l,h’,o) - 2E5
6x
I(-1,4,2) = - 2& & (A20)
v
I(-1,k4,4) = - 128
K

\
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APPENDIX B
CATCULATION OF LEADING-EDGE THRUST

In order to sustain a finite downwash at the subsonlc leading edge
of & wing, an infinite discontinuity in the pressure is required at the
edge. Such an edge experiences a suction force which depends on the
nature of the pressure singulsrity (ref. 6). When the singularity in
velocity normasl to the leading edge has the form '

Vvn Gp

= (
n_n _ Bl)
= |
the drag coefficient due to suction is given =s follows:
a 2
Span Bn_

In these equations, G, is a constant, X, is the perpendicular distance
. ] 2 . o { 2
from the leading edge, and Bp = /1 - M= where M, = Nhy/l + m~. For

the twisted wings of this paper (setting Um(i!)ojt = 1)

2 N
3 Ti0 + £ + fih‘_l‘
(1.2

Integration of equation (B3) from the leading edge in the mammer of
reference 6 yields -

(B3)

L d _
Cp,i = ¥ 5¢ gy =x

b 2 4
7 %1 = Ti00140 + 8 Typ0 1 ¥ 8 f0; 3 (Bl*_)

where
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Since the following relation holds:

r—lJ 2 _ g2 -
¢ = X X a8 + r 1 azc

r T Tr I'-2

any oy can be reduced finelly to the case r =1 or r = 0.
Performing this reduction in equation (BM) end differentiating with
respect to x, gives

Gn _ 1im ( vn,i) _ et (£10 + 3o + £13,) B
Bn *n—0 o = B o5 © N (B5)

where

5 = tan~m

Substitution of equation (B5) into equation (B2) yields

,’ 2 2
(l - p.)mCD,i = - lié H (fio + fiz + fill-) (36)

In the superposition of two solutions, vy = vy 3 + Vp j Iin equation (B5)
and the interference drag is given by

/ )
l-k

(- wn(,1)r = - § 7y pEro * 1o + £1) (%0 * Ty + )

(B7)

Equation (B7) is easily extended for quartic, quintic, and higher degrees
of twist by adding values of f inside the parentheses as required.
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TABLE T

VALUES OF fij FOR TWISTED WINGS

k| fgo fi0 f1o fo0 foo £30 £30 3
0 0.63662 0.25000 0.07074{0
2| .95193| .54453] .0b60k| .18650] .0k215] .0obk524| ,01880] .00016
AL .86907] .b2k35) 10613} .12271| ,08350| .02463| .03253| .00LO3
.6} .78348] .33026| .15318| .08282| .10773| .01k80| .03T00} .00248
8| .70518| .26189| .18736] .05822| .12080| .0092k| .03766| .00L23
1.0| .63662| .21221| .21221 .okolk| .12732| .00606} .03638| .00606
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TABLE IT B

INTERFERENCE DRAG-LIFT COEFFICIENTS FOR TWISTED WINGS

[m=1]
{a) Delta wings, n =0
k €00 €01 €02 €03 €11 €12 €13 €22 €23 €33
o] 0.1592 | 0.1592| 0.1592 | 0.1592 } 0.179C| 0.1910| 0.1989 | 0.2122 | 0.2274 | 0.2487
.21 1784 | .1834| .1871| .1900] .o2i7i| .2h17] 2615 .2B48| .3215 | .37hh
A Jezok| 2333 Jehe2| 2503 .2626] .3388| .3792| 4213 L4965 | L6075
61 27901 3009) 3167 .3301| .3932f .4672]| .5286| .5993] .7ib7| .88Lo
81 .3559| .3900| .hi7o| Jsho7{ .5259{ .6370] .7291] .8322] 1.001k |1.2473
1.0 .5000| .5683| .6250] .674h)| .7958| .983h| 1.1399| 1.3000§ 1L.5T46 | 1.9662

(b) Arrow wings, M =k

k €00 €o1 €11

0 0.1592 0.1592 0.1790
.2 1421 L1483 .1892
A 1353 AM6T 2104
.6 .1259 .138% .2123
.8 .1022 1116 JLThl

1.0 0 o o
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OPTIMIM COEFFICIENTS OF LIFT AND DRAC FOR TWISTED WINGS

TABLE I1T

- 53]

(a) Delta wing with O, 1, 2, end 3rd degree twist

E . Cr,0 Cr,1 Cr,2 T3 ¢p,0
0 1.0000 2.0.0001L 20.000L o 0.0796
.2 1.0797 .2592 -.5956 2567 .0888
2.0980 -3.3817 3.7405 -1.4569 .1o7k
.6 2.0803 -3.0k06 3.2043 -1.24ko0 L1348
.8 1.9886 -2.7857 3.03510 -1.2339 .1708
1.0 1.8384 -2,0685 2.1257 -.8956 2341
(b) Delta wing with O and 1st degree twist
k Cr,0 Cr,1 Cp,0
o 1.0000 ) 0.0796
.2 1.174k - 17hk .0888
" 1.277h - 277k . 108k
.6 1.311h -.511k L1361
.8 1.3357 = 3347 1722
1.0 1.k2g2 -Ji2g2 2353
(e} Arrow wing wvith 0 and lst degree twist
E L0 Tr,1 Cp,0
0 1.0000 o 0.0796
.2 1.1782 -.1782 0705
b L.2187 -.2187 066k
.6 1.2012 -.2012 <O6LT
.8 1.1759 -.1759 .050%
1.0 by b _x )

8Fxact calculation would show these values to be zero.

are in general less esccurately computed than the values of CD,O'

bvalue of X mey be assigned arbitrarily.

The velues of Cr,
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Figure 1.~ Arrow plen form.
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(b) Drag improvement over flat wing at optimum twist.

Figure 2.- Drag characteristics of twisted delta wings., m = EL =13
p =0,
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Figure -%.- Drag characteristics of twisted arrow wings. m = Cp =1;
b = k.
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Figure 4.,- Optimum incidence angles on linearly twisted wings.

m=CL=CL,f = 1.



o, deg

28

12

NACA TN 4104

’c?/—__\

— N
s .
\ N l\\

%\ 1 \\\

~ \\E\‘\
\

(b) Arrow wings. u = k.

Figure 4.- Concluded.
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